
Letting the Cloud Serve DNN Inferences with

Ruthless Efficiency

Reza Karimi∗, Anthony Simpson†, Antoine Kaufmann†, Ymir Vigfusson∗, Jonathan Mace†

∗Emory University, †Max Planck Institute for Software Systems

Introduction

The success of deep neural networks (DNNs) in computer
vision, NLP, speech recognition and other domains has led
to the rapid growth of systems to support and enable their
wider use. DL workloads can broadly be divided into two
categories. Training is a compute intensive batch task that
constructs a DNN using large quantities of data; training
bears similarity to other batch tasks like data analytics jobs
and faces similar challenges. In contrast, inference is a low-
latency, online task that generates predictions on-demand
using a trained DNN; inference bears similarity to online
applications like databases, web services, and microservices,
and is often just one piece of a broader end-to-end applica-
tion. DNNs are typically hosted separately from application
logic and accessed via remote procedure call (RPC).

The need for speed. Owing to the ecosystem of plat-
forms, libraries, and runtimes used to develop, train, and
deploy DNNs, current hosted DNN inference engines, or
model serving services, have inherited unnecessary bloat.
Time-critical inference requests for a model may require
a large container or an entire virtual machine (VM) to be
spun up, overhead that eclipses the lightweight operation of
running an inference on a model loaded into a CPU or GPU.
Researchers evaluating the feasibility of DNNs in serverless
applications measured cold-start times of up to 12 seconds
for 100MBmodels [3]. These overheads translate into latency
for end-users and costs for model providers, problems that
stymie the growth of hosted machine learning applications.

Our contributions. We set out tackle the challenges of
making model inference services fast and cost-effective. We
have built Clockwork: a model serving system that pro-
vides lightweight DNN inference on its compute resources
as a multi-tenant cloud primitive. Instead of depending on
bulky associated environments for running each inference,
Clockwork treats the DNN models as first-class citizens.
Clockwork exploits the observation that DNN inference
has predictable duration and deploys a centralized scheduler
to provide fast and cost-efficient inference operations with
consistent performance. The Clockwork design maintains
isolation and provides latency SLOs to operators. The system
ensures fair and graceful degradation of inference service
across models when load exceeds system capacity, and her-
alds capacity warnings sooner than in feedback loops driven
by SLO violation rates.

Multi-tenant Model Serving Goals

Machine learning models are increasingly being applied to
solve problems in interactive settings, and now sit on the
critical path of end-user requests. To accommodate such
applications, model serving systems have grown while fo-
cusing predominantly on maximizing the throughput for
individual models (such as DNNs) operating at large scale,
for example by leasing a dedicated Google virtual machine
with a TPU. Recent research, however, has started to exam-
ine model serving where multiple pre-trained models need
to be served. In this scenario, multi-model serving is an on-
line task with typically unpredictable workloads that can
experience temporary bursts and fluctuations in demand.
Multi-model serving strives for several goals: (G1) To satisfy
strict latency SLOs (on the order of milliseconds); (G2) To
maximize throughput by minimizing wasted resources (e.g.,
by packing models together), and (G3) To drop requests early
and in a fair manner across models when SLOs cannot be
met because of limited compute resources.
The first two goals underscore the higher-level objective

of making model serving cost-effective. In settings whereby
one model does not exhibit enough demand to fully utilize
an entire machine, as studied in recent work, the resources
can be shared to mitigate costs – scenarios include cloud
model hosting, edge model hosting, and on-premise hosting.

Challenges

Yet resource sharing makes goals G1-G3 difficult to meet for
several key reasons.

Foregone performance isolation.The systemmust pre-
vent performance interference between different tenants.
However, shared systems cannot rely on OS-level isolation,
instead must address isolation at application level.

Low-demand workloads.Many workloads are intermit-
tent or sporadic, or never see sufficient demand to warrant
dedicated resources and are thus subjected to cold-start. Ex-
isting cloud solutions are insufficient for low-demand work-
loads, as they suffer from high latency and unacceptable
dollar costs, and these workloads have not been studied at
adequate depth in recent literature to our knowledge.

Security concerns. Shared systems execute requests of
different tenants within the same shared processes. Thus,
users are no longer separated by rigid OS or VM boundaries.
This opens the doors for side-channel attacks whose risks
must be considered, assessed, and assumed.

1



AI Systems at SOSP ’19, October 27–30, 2019, Ontario, Canada Karimi and Simpson, et al.

0 100 200 300 400 500
latency (ms)C

lo
ck

w
or

k
BA

R
IS

T
A 300 46 125

11

5

5

inference
model load

container download
vm spawn

Figure 1. Breakdown of worst-case model inference times with a

cold-start (no model loaded into GPU memory) for Clockwork and

numbers reported for BARISTA [2] on the Resnet-50 DNN benchmark.

Opportunities

DNN inferencehas predictable performance.Unlikework-
loads from other domains, DNN inference has highly pre-
dictable resource consumption, and requests have a pre-
dictable duration. In othermulti-tenant systems, performance
isolation is difficult primarily because resource requirements
are unpredictable and vary widely from request to request,
and once a request is admitted it runs to completion. DNN
inference does not face this challenge, because inference is a
fundamentally predictable computation. Experiments with
our TVM-based [1] runtime show 99th percentile latencies
not exceeding 2% of the mean for a range of off-the-shelf
DNNs. This determinism stems from the structure of DNNs,
they are a fixed sequence of mathematical operations. A pri-
ori, we can quantify the exact number of flops required by
each layer of the DNN. Moreover, DNNs are predictable as
they do not contain control flow elements.

Models likely to be reused can be cached.Once amodel
is trained, the model weights are immutable and identical
between inference requests. The memory footprint of a DNN
is in the tens/hundreds of MBs; while, today’s servers often
exceed 1TB of main memory and present GPUs have up
to 32GB device memory. Caching the models is thus more
efficient than to reload models from scratch.

Inference scheduling can be highly optimized. We
can exploit the predictable DNN inference latency together
with predictable transfer times between host memory and de-
vice memory to improve request scheduling, both at request
admission, and at finer granularity within the system. Instead
of heuristic-based best-effort scheduling, we can optimize
an objective across all pending requests, such as minimiz-
ing average execution latency, and to ensure fair resource
sharing across tenants.

Clockwork System Design

The Clockwork system architecture is similar to existing
systems such as shared filesystems and databases. Meta-
operations are handled by a logically centralized controller.
DNN inference is handled byworker processess spread across
many machines. The lifecycle from a user’s perspective is to
(1) upload a trained DNN to the system, then (2) send infer-
ence requests. The system performs inference when requests
are received, and transparently scales based on the workload

WFQ Rand CR EDF
FIF

O

Clockw
ork

0.00

0.25

0.50

0.75

1.00

Normalized Fairness Index

WFQ Rand CR EDF
FIF

O

Clockw
ork

0.00

0.25

0.50

0.75

1.00

Normalized Avg Success Ratio

Figure 2. Fairness and average success rate of different scheduling

policies compared to the Clockwork scheduling algorithm.

demand. Internally, the system distributes models to one or
more workers.

At the heart of Clockwork is an optimization algorithm
for scheduling requests. Our algorithm expands Fair-EDF [5]
to multiple workers, supporting arbitrary-length jobs and
considering DNN-model affinity, explicitly trading off the
number of completed jobs with fairness – the variation in
the proportion of jobs completed by each tenant out of those
they requested. We also exploit batching, explicitly bundling
together inferences for the same model instance and thus
avoiding model start-up costs.

Evaluation Results

Clockwork is fast. To illustrate the potential speed-up
from our approach, Figure 1 shows the breakdown of worst-
case performance for the state-of-the-art model serving sys-
tem BARISTA [2] and Clockwork on a standard benchmark
(Resnet-50) when serving an inference for a model not yet
loaded into memory. Once the model weights have been
received by the node, Clockwork loads the model and com-
pletes an inference in 17ms, compared to 478ms for BARISTA
(28× slower) due to an amalgam of overheads. To mitigate
overheads, BARISTA attempts to predict the load and proac-
tively spawn up appropriate VMs, containers and models
before they are needed. Clockwork, in contrast, curbs over-
heads and focuses on scheduling inference tasks in a manner
that further reduces the already meager model load-up times.

Clockwork is fair.On a set of different simulated work-
load scenarios that vary model request rates, client bursti-
ness, SLOs and DNN models, the Clockwork algorithm
outperformed other scheduling policies on both Jain’s fair-
ness index [4] and the proportion of jobs that finished prior
to their deadline (Figure 2).

Conclusion

Our system, Clockwork, provides DNN inference as a cloud
primitive by implementing a shared multi-tenant system.
Clockwork’s ability to serve models very quickly — our
implementation over TVM serves ResNet-50 inference query
from cold start in only 17ms — clears obstacles for applying
machine learning on the critical path of requests and paves
the way for highly efficient model serving.

2



Letting the Cloud Serve DNN Inferences with Ruthless Efficiency AI Systems at SOSP ’19, October 27–30, 2019, Ontario, Canada

Acknowledgement

This work was partially supported by NSF CAREER Award
#1553579.

References

[1] TVM: End to End Deep Learning Compiler Stack. https://tvm.ai/, Last
accessed on 08-08-2019.

[2] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei Kang,
Hongyang Sun, Aniruddha Gokhale, and Gabor Karsai. Barista: Effi-
cient and scalable serverless serving system for deep learning prediction

services. arXiv preprint arXiv:1904.01576, 2019.
[3] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Serving

deep learning models in a serverless platform. In 2018 IEEE International
Conference on Cloud Engineering (IC2E), pages 257–262. IEEE, 2018.

[4] Raj Jain, Arjan Durresi, and Gojko Babic. Throughput fairness index:
An explanation. In ATM Forum contribution, volume 99, 1999.

[5] Yuhan Peng and Peter Varman. Fair-EDF: a latency fairness framework
for shared storage systems. In 11th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 19), 2019.

3

https://tvm.ai/

	References



